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LElTER TO THE EDITOR 

A regular-random fractal model for cluster numbers and 
structure in percolation 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 15 July 1986 

Abstract. A regular-random fractal, intermediate between statistical fractals and determinis- 
tic fractals, is presented to imitate the geometric texture at and near percolation threshold. 
The model is constructed on the square lattice via a rule of bond occupation with use of 
position space renormalisation group. It shows the typical percolation behaviour as a 
function of a parameter p (the bond concentration). The critical bond concentration, 
correlation length exponent and scaling property of the cluster size distribution are found. 
The scaling relations between critical exponents for cluster numbers and structure are 
shown to be exactly satisfied. The fractal dimension of its cutting bonds agrees with the 
inverse of the connectedness length exponent at criticality. 

The geometry and statistics of clusters is one of the most important problems in phase 
transitions and critical phenomena. The properties of cluster numbers and structure 
in percolation have been reviewed by Stauffer (1979, 1985). Fractals and the concept 
of fractal dimensionality have recently received considerable attention owing to their 
applicability to the percolating infinite cluster (Mandelbrot 1982, Given and Mandel- 
brot 1983, Ben-Avraham and Havlin 1983, Stanley and Coniglio 1983, Kapitulnik and 
Deutscher 1984, Stanley 1985, 1986). Currently, fractals fall into three completely 
distinct classes: deterministic fractals (such as the Sierpinski gasket), statistical fractals 
(such as percolation clusters) and regular-random fractals (Martin and Keefer 1985) 
(intermediate between deterministic and statistical fractals). Fractal models have been 
proposed to imitate the infinite cluster and its backbone at the percolation threshold, 
i.e. the family of Sierpinski gaskets (Gefen er a1 1981), the Mandelbrot-Koch curves 
(Mandelbrot 1984a, b, Mandelbrot and Given 1984) and the regular-random fractals 
(Kirkpatrick 1979, Martin and Keefer 1985). These models possess geometric and 
topological properties very close to the infinite cluster at threshold but do not describe 
the approaches towards the threshold. Nagatani (1985,1986) proposed the determinis- 
tic fractal model to imitate the geometric texture near the threshold. It was found that 
the typical percolation behaviour was successfully reproduced as a function of bond 
concentration p near the threshold. The critical concentration, correlation length 
exponent and scaling property of the cluster size distribution were found. These models 
are not satisfied by Coniglio’s relation (1982): D,= l / v  where D, and Y indicate the 
fractal dimension of cutting bonds and the connectedness length exponent, respectively. 

In this letter, we propose a regular-random fractal model to imitate the geometric 
textures of cluster numbers and structure at and near the percolation threshold. We 
shall show that the model is satisfied by all the conventional scaling relations between 
critical exponents for cluster numbers and structure and Coniglio’s relation. The model 
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also presents a fractal geometric picture for the position space renormalisation group. 
We restrict ourselves to the bond percolation problem on the square lattice. Consider 
a square superlattice made by nodes separated by a distance of t =  bN,  connected by 
quasilinear links with a hierarchical structure. The lattice model is self-similar on 
smaller length scales than the connectedness length 6, but becomes a homogeneous 
square lattice on large length scales. Three construction stages of the lattice model 
are shown in figure 1. Each bond on the square lattice is replaced by a cell with four 
bonds of length f (figure l ( b ) ) .  The dotted lines represent electrical connections with 
the original nodes. Each bond on the resultant lattice is furthermore replaced by a 
cell (figure l (c ) ) .  The process is continued to the N stages. We note that a position 
space renormalisation is exactly applicable to the resultant lattice model because of a 
hierarchical structure. Each bond on the lattice after the Nth stages is occupied with 
probability p N  and vacant with probability 1 - p N .  The recursion relation for p N ,  the 
occupation probability, satisfies (Hong 1984) 

P N  =R(PN-I)=2Pk-L-p%-1 ( 1 )  

which has the fixed point p *  = (A- 1)/2 = 0.618. 
Figure 2 shows spanning and non-spanning configurations for the b = 2 cell. Span- 

ning clusters are indicated by figures 2(a), ( b )  and (c).  Non-spanning clusters are 
represented by figures 2(d),  (e) and (f). We define that the cluster of two bonds in 
configuration (e)  is constructed by two unconnected bonds. We consider a stepwise 
generation of the regular-random lattice model, to correspond with the regular-random 
fractal designed by Martin and Keefer (1985). In figure l (a ) ,  a bond is occupied with 
probability po  and unoccupied with 1 - p o .  If the bond is present, the bond is replaced 
with a spanning cluster in figures 2 ( a ) ,  ( b )  and (c), and otherwise with a non-spanning 
cluster in figures 2(d),  (e )  and (f), where the occupation probability p1 is given by 
pl = R-'(po). Furthermore, the second-order generation is obtained by replacing each 
occupied bond with, a spanning cluster and each unoccupied bond with a non-spanning 
cluster, where p r  = R-'(pl). The process is continued to the Nth-order generation (see 
figure 3). In the limit where N is sufficiently large, the resultant lattice approaches 
the percolation threshold. 

Figure 1. Three construction stages of a square superlattice with a hierarchical structure. 
Each bond (a)  on the square lattice is replaced by a cell with four bonds of the length 
l / b  ( b  = 2 )  ( b ) .  The dotted lines represent electrical connections with the original nodes. 
Each bond on the resultant lattice ( b )  is furthermore replaced by a cell ( c ) .  The process 
is continued to the N stages. 
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Figure 2. Spanning and non-spanning configurations for the b = 2 cell. Spanning clusters 
are shown in (a), ( 6 )  and ( c )  are connected by the electrical connections indicated by 
dotted lines at the original nodes. Non-spanning clusters are represented by ( d ) ,  ( e )  and 
( f ) .  The cluster of two bonds in the configuration ( e )  is defined to be constructed by two 
unconnected bonds. The non-spanning clusters generate finite clusters in percolation. 
Unconnected vertices of bonds are marked by triangles. The number below each figure 
indicates that of the same configuration. 
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Figure 3. The first three generations of the regular-random model. A bond is occupied 
with probability po at the zeroth generation ( a ) .  At the first generation ( 6 )  the bond is 
replaced with a spanning cluster in figures 2(a), ( b )  and ( c )  where the occupation probability 
is given by p ,  = R-’( po).  At the second generation ( c )  each occupied bond and unoccupied 
bond are, respectively, replaced with a spanning cluster and an unspanning cluster. The 
process is continued to the Nth  generation. Unoccupied bonds generated finite clusters 
successively. Unconnected vertices are marked by triangles. 

When one has the initial value po = p * ,  the resultant lattice represents the geometric 
texture at the threshold. On the other hand, if p o  = 1 - E or p o  = E (0 < E << l ) ,  then the 
lattice represents the geometric texture above or below the threshold. We note that 
the geometric texture at p o  = p *  gives the regular-random fractal exactly, but the 
geometric texture at po = 1 - E (or po = E )  becomes the fractal in the range of length 

The system obtained consists of the islands separated from the percolating network 
and a superlattice made by nodes separated by a distance f = 2 N ,  connected by 
quasilinear links. In general, every lattice bond has three choices: it can be empty, 
with probability 1 - p  ( p  = p N ) ;  it can be part of the infinite network of occupied bonds 
with probability pPm (where P,  is the percolation probability), or it can be part of 
one of the many finite clusters, with probability p (1 - Pm). Since each s cluster contains 
exactly s bonds, the probability of any lattice bond belonging to an s cluster is P, = sn, 

L: L<< 6 ( f = 2 N ) .  
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( n ,  is the number of s clusters divided by the total number of lattice bonds). The sum 
of all these probabilities equals unity. As the concentration p approaches the threshold 
p c  (=  p * ) ,  the pair connectedness length 6 diverges, 6 - ( p  -pc)-’. The exponent of 
the connectedness length is given by 

v = In 2/ln(dR/dp)pr = 1.635. (2) 
At the threshold, the fractal dimension D of the infinite cluster is given by 

D = ln((n,))*/ln b 

= 1.611 (3) 
where the asterisk indicates the value at the fixed point and (( n , ) )  is the average number 
of bonds within the spanning cluster if the cell is connected: 

( ( n i > > =  (ni>/R(p) 
=(4p4+ 12p3q+4p2q2)/R(p). (4) 

D b  = h((nb))*/ln b D, = ln((n,))*/ln b ( 5 )  

Similarly, we derive the fractal dimensions of the backbone and its cutting bonds: 

where n b  and n, represent, respectively, the number of bonds through which electrical 
current flows in the spanning cluster and the number of bonds such that if one is cut 
the entrances are no longer connected to the exits in the cell: 

We obtain the following relation: 

dRldp  Jp* = ( (nc>)* .  (7) 
The rigorous relation D, = I /  v derived by Coniglio (1982) holds for this model. The 
fractal dimension of cutting bonds agrees with the inverse of the connectedness length 
exponent at criticality. We thus obtain explicit expressions for the quantities charac- 
terising cluster structure. 

The other important feature of the regular-random model described above is that 
it is possible to get explicit expressions for the quantities characterising cluster numbers. 
We define ( N N ) ,  the average of the total number of bonds at the Nth stage, and ( n N ) ,  
the average number of finite clusters generated at the Nth stage. The following relation 
is obtained: 

(”) = ( n N )  + ( ( n  i , N ) )  ( N  N - 1) (8) 
where ( ( n i , N ) )  represents the average number of bonds within a spanning cluster 
generated at the Nth stage when the cell is connected. We obtain 

where (nLN) indicates the average number of bonds within the cell of non-spanning 
configurations (figures 2(d),  (e )  and (f)) at the Nth stage. In order to obtain the 
cluster size distribution, one should note that the clusters generated in the kth stage, 
on average, contain s( k) - ( b ) D  bonds. At the threshold, the cluster size distributions 
consist of 

n : -  f ( 1 / b 2 ) k 8 ( s - ( b D ) k ) .  
k = l  
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By spreading the delta functions over the interval we obtain 

nT - s - T  r = 1 + d /  D. ( 1 1 )  

Near the threshold, the regular-random model is self-similar (fractal) on smaller length 
scales than the connectedness length, but becomes homogeneous on large length scales. 
The largest finite clusters contain s,( = 5 ” )  bonds and finite clusters, larger than s,, do 
not exist. One can arrive at the scaling form near the threshold 

f ( lP-pcl’ /“s)  l/a = VD (12) n, - S - ( l + d / D )  

where the function f ( x )  is zero for x 5 1. 
The similar scaling form for the radius of cluster holds: 

R , - s l ’ ” g ( J p - p c J 1 ’ ~ ~ ) .  (13)  

All the scaling relations between critical exponents for cluster numbers and structure 
(Stauffer 1985) are satisfied by our model: 

p = ( 7 - 2 ) / a  y = (3 - .)/a (2 -a) = ( r -  1)/u 
(14) 

l/D=crv d v = ( 7 - 1 )/ U. 

In summary, the geometric texture in percolation can be imitated by the regular-random 
model with the use of a position space renormalisation group. The model shows the 
typical percolation behaviour as a function of the bond concentration p .  The connected- 
ness length exponent is obtained for characterising the approaches towards the percola- 
tion threshold. All the conventional scaling relations between critical exponents for 
cluster numbers and structure are satisfied in this construction. Conglio’s relation for 
the cutting bonds is also satisfied. 
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